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Calbiochem’ MAPK Family Pathways

Cellular Computation

» No survival without computation!
+ Finding food
- Avoiding predators

INPUT
(E1)

¥
MAPKKK T = MAPKKK®

- How do cells compute?
+ Clearly doing “information processing”

- What are their computational principles? ™. MAPKK Pase -2

...................

ouTPUT

Ultrasensitivity in the mitogen-activated protein cascade, Chi-Ying F. Huang
and James E. Ferrell, Jr,, 1996, Proc. Natl_ Acad. Sci. USA, 93, 10078-10083.




More concretely

- Give substance to the claim that
"cells compute”
- Yes, but what do they compute?

- Catch nature red-handed in the act
of running a computational task

- Something that a computer scientist
would recognize as an algorithm




Chemical Algorithms




Can Chemistry Compute?

- If we believe that biology can do computation...

- It must be somehow based on chemistry

+ SO, can chemistry compute, and how?

- That is in itself a very interesting question with non-trivial answers




Chemical Programming Examples

specification

Y .= min(X1, X2)

Y ;= max(X1, X2)

program

XT+ X2 ->Y

X1->11+Y Max(X1,X2)=
X2 -> |2 + VY (XT+X2)-min(X1,X2)

LT+ L2 ->K (but is not computed

Y +K->0 ‘sequentially”: it is a form
of concurrent computation)

(bio-)chemical reaction network
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Biochemical Networks

Across species: Ortholog genes
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How do we know networks exist?

If you can break it, it must exist

Genome sequencing identifies genes (their “coding” regions)
- Sequence comparison identifies orthologs and paralogs
- Gene-produced proteins are isolated or synthetically produced in vitro or in vivo (all difficult)
- Their qual/quant interactions are studied (often only in vitro)
- Their 3D structure is determined (may take decades)
- Networks are hypothesized, often qualitatively
- Models are build, quantitative function is inferred
- Further experiments (such as gene knockouts) are performed to break the network.

- (Genes and networks are compared across and within species

- High-value activity: 2001 Nobel prize in Physiology for the discovery of “Key requlators of the
cell cycle ... they have identified key molecules that requlate the cell cycle in all eukaryotic
organisms, including yeast, plants, animals, and human.” These are actually not (currently) the

same molecules, but it is (still) “the same network” in all of them. .




Simplified example e

S
|

- Genes for x, s, r identified - X
- Say protein x exists in high quantity I

+ Knock gene-x out: one protein goes missing, that must be x's protein

- Say proteins s exists in “undetectable” guantities

- Maybe 10~100 copies per cell on average: it cannot be found
- Knock gene-s out: nothing seems to go missing, but the network’s function stops
- Then we know protein-s must be in the network, although we don't know “where”

- Heterogeneous system

- Itis indeed the case (in this cell-cycle-switch example) that x is “deterministic” (high
copy count), while s,r, are "stochastic” (very low copy count) and yet s,r control x.

—




Consensus Networks




A Consensus Problem

- Population Consensus

- Given two populations of x and y "agents”
- We want them to “reach consensus”

+ By converting all agents to x or to y S,DeC[ﬁCC]nOH
depending on which population was in majority initially .
XY = X+Y, 0 if Xo2Y,

- Population Protocols Model XY =0, X+Y if Yo2Xg

- Finite-state identity-free agents (molecules) interact in
randomly chosen pairs (= stochastic symmetry breaking)

- Each interaction (collision) can result in state changes
- Complete connectivity, no centralized control (well-mixed solution)

11




A Consensus Algorithm
- Approximate Majority (AM) Algorithm

- Uses a third "undecided” population b
- Disagreements cause agents to become undecided
- Undecided agents agree with any non-undecided agent
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Dana Angluin - James Aspnes - David Eisenstat

A Simple Population Protocol for Fast Robust
Approximate Majority
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A Biological Implementation

Approximate Majority (AM)

T :
1) Bistable
Even when initially x=y (stochastically)

2) Fast (asymptotically optimal)
O(log n) convergence time

3) Robust to perturbation
above a threshold, initial majority wins whp

Dana Angluin - James Aspnes - David Eisenstat

A Simple Population Protocol for Fast Robust
Approximate Majority 2007

Epigenetic Switch

(HMT) (HDAC)
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Figure 1. Basic Ingredients of the Model

Theoretical Analysis of Epigenetic
Cell Memory by Nucleosome Modification
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Here We Got Lucky

- We can claim that the epigenetic switch is a direct I
biological implementation of an algorithm P té'\T@}\

- Although we may have to qualify that with some notion of
approximation of the (enzymatic) kinetics

- In most cases the biological implementation seems
more indirect or obfuscated
- "Nature (s subtle but not malicious - Einstein” Ha! think again! .
- Other implementations of Approximate Majority seem more
convoluted and approximate

14




How to model “Influence”

"True” molecular interactions. “Equivalent” influence interactions.

-
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Figure 4: a) Schematic diagram of a primitive cell cycle in the reinitz framework.

Figure 3: a) Schematic diagram of a simplified SIMM model [17]. The activa-

Chemical Reaction Network « > Influence Network
I IS TR T ) LN D ) Instead of modeling basic interactions, such as binding, synthesis, and degra-
E\-(J]\-ng a pf]l’ll]’[ﬂ- € Elll\dT} otic C{H C“ : l{’ ?\I()d{'l dation of molecular components, this framework models interactions simply as
- ] i activation or inhibition. This approach also reduces the number of nodes nec-
Malte Liicken, Jotun Hein, Bela Novak essary In the network, as e.g. the inhibitor binding tightly to the activator to

form a complex, which produces phosphorylated inhibitor to be degraded un-
der catalysis by the activator, is now simply a double negative feedback loop
shown in Figure[I} This type of interaction is the basis of both aforementioned
molecular model, therefore they can both be summarized in a single Reinitz
model.
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activation =@

The Triplet Model of Influence hibiion

inhibit x
inhibition
high —x«- low = xishigh XX, — xz—-— X is low
(modiﬁed)"-.,.__I‘.‘.-'; (unmodified)
activation
activate x
Usually modeled by triplet motif

sigmoid (e.g. Hill or
Reinitz) functions

biological mechanism:
(e.g.;) multisite
phosphorylation

We model them by
4 mass action reactions over
3 species X, Xy, X5

They actually implement a
Hill function of coefficient 2:

N\ %0
Nxt
\ 2

r;=0.1
r10=10.0
rp;=0.1
1, =10.0

catalysis -o

For example:

Approximate Majority
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ne Cell Cycle Switch

Universal control mechanism regulating
onset of M-phase

Paul Nurse

'his basic network is universal in Eukaryotes [P Nurse]

- The switching function and the basic network is the same from yeast to us.

- In particular detail, in frog eggs, G,/M transition:

Double positive feedback on x
Double negative feedback on x
No feedback ony. Why ???

Numerical analysis of a comprehensive model of M-phase control in
Xenopus oocyte extracts and intact embryos

Bela Novak* and John J. Tysont
irginia Polytechnic Institute and State University, Blacksburg, Virginia 24060-0406, USA
ral Chemical Tachnology, Technical Uriversity of Budapest, 1521 Budapest GellertTer 4, Hungary

Gy PHASE

S PHASE

Gi PHASE

Start transition

- The function is very well-studied. But why this network structure?

- That is, why this peculiar algorithm?




How to Build a Good Switch

- We need first a bistable system: one that has two distinct and stable
states. l.e., given any initial state the system must settle into one of
two states

- The settling must be fast (not get stuck in the middle for too long)
and robust (must not spontaneously switch back)

- Finally, we need to be able to flip the switch by external inputs

18




A Bad Algorithm cotalyss o

+ Direct Competition

- X catalyzes the transformation of y into x
-y catalyzes the transformation of x into y
- when all-x or all-y, it stops

- This system has two end states, but

- Convergence to an end state is slow (a random walk)

- Any perturbation of an end state can start a random
walk to the other end state (hence not really bistable)

Yy + X — X+ X
X+ty—=Yy+y

111111

19




A Good Algorithm

- Approximate Majority (AM) inhibition =
- Third, undecided, state b

- Disagreements cause agents to become undecided
- Undecided agents believe any non-undecided agent X

- With high probability, for n agents !

- The total number of interactions before converging is O(n log n)
= fast (optimal)

- The final outcome is correct if the initial disparity is w(sgrt(n) log n) o "
= solution states are robust to perturbations = N orst-cash scenarnio
- Logarithmic time bound in parallel time Koy ] SOTNG XY D=0
o N N
- Parallel time is the number of steps divided by the number of agents j::[
- In parallel time the algorithm converges with high probability in O(log n)

Dana Angluin - James Aspnes - David Eisenstat

A Simple Population Protocol for Fast Robust

Approximate Majority
20




An “Ugly” Algorithm: Cell Cycle Switch

activation -e

S o
l inhibition =4
zZ
Nobel-prize T |
winning network — X
® I
r
Obfuscation of a
d iSt ri b Uted t Ga/M transition
a | g O rith m ? g FH:faEplhase-m-Anaphase transition

Gy PHASE

- s it a good algorithm? Is it bad?
- |s it optimal or suboptimal?

Gi PHASE
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Convergence Analysis - CONSENSUS

- Switches as computational systems (s b s ahy wien

| |
[ o O
=y
|_T |__1 f_T i_T
t i cCcC

—t— 0.00355 0 0.00710 0 0.00710

. 15000 15
Start symmetrical roxlt,
(Xo=X{=X, etc.) -

Black lines: several stochastlc simulation traces
Color: full probability distribution of small-size system
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Steady State Analysis - SWITCH

+ Switches as dynamical systems

bias 1

ll_l bias

Cx
L 7 K -i-_TSTx
SX SX !

% csx, - 150

Black lines: deterministic ODE bifurcation diagrams
Red lines: noisy stochastic simulations
Color: full probability distribution of small-size system
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- Our paper appeared:

+ Suggesting GW is a better switch
than CC. September 2012

- Another paper that
same week:

- Showing experimentally that the
Greatwall loop is a necessary
component of the switch, i.e. the
not-as-good-as-AM network
has been ‘refuted’

/_12_1
T

SCIENTIFIC 02
REPLIRTS ]
@ The Cell Cycle Switch Computes
Approximate Majority
52’2’:5;;%:; Lwca Cardelli’ & Atila Csikasz-Nagy®
?;il!ﬁrc S~ @

COMMUNICATIONS

ARTICLE

D 6 Jul 2012 | Accepted 14 Aug 2012 | Published 11 Sep 2012 | pOt:10. /i 2062 |
Greatwall kinase and cyclin B-Cdk1 are both critical
constituents of M-phase-promoting factor

MasatoshiHara'! Yusuke Abelt, Toshiaki Tanaka?, Takayoshi Yamamota® !, Eiichi Okumura' & Takeo Kishimoto!
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activation -e

Antagonistic Networks hibiton

Tvs. 1 Tvs. 1 2 VS. 2 3Vvs. 3
Mutual Inhibition & Mutual Inhibition & low Notch => high Delta

Self Activation Mutual Anti-activation g — >
S ya o3

N r‘ ‘rr
I ;

y _Z J — 2
I ? g i i
Ml E %

low Delta <= high Notch

Cell cycle transitions Septation Initiation Delta-Notch The "new” cell cycle switch

Molecular mechanisms creating bistsble switches at cal cycle Phosphorylation network dynamics in the control of

cell cycle transitions

Danlel Fisher'*, Lillana Krasinska'*, Damien Ct
) ) x.ui hd — K€ = ow
s
Polarity establishment b R
LN ~
IT’E;I\lNOsSAOCPT'H)%IS' The PAR network: redundancy and L kY » - l i
- robustness in a symmetry-breaking 1 i YNC.‘: = YL'_ > Y:)\d

OF
THE ROYAL | 5 system
SOCIETY JLJ Y C “ = Q

Patterning embryos with oscillations: structure, function and
dynamics of the vertebrate segmentation clock

Andrew C_ Oates*, Lus G. Morel'3 and Sadl Ares®a®

- & iy
- !'_

N ARV

k Lateral Inhibition through Delta-Notch Weel® Weel ||
ene n eTWOF S Dynamics of SIN Asymmetry Establishment Signaling: A Piecewise Affine Hybrid Model* )

Construction of a genetic toggle switch in
Escherichia coli

Taire J.

Timothy S. Gardner®Z, Charles R. Cantor® & James 1. Collins*?




Network Morphisms

When does a (complex) network
implement a (simpler) algorithm?




Comparing networks

How can we compare different networks?

- Different number of species
- Different number of reactions
- Apparently unrelated connectivity

So that we can compare their function?

- Does antagonism (in network structure) guarantee bistability (in function)?

- We do it by mapping networks onto one another
so that they emulate each other

- Deterministic semantics version of “simulation” of systems

- (Stochastic semantics was the starting point, but too difficult/demanding for typical
biological networks.)

—xd

0.0}
~—
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N
L~
LI

— < o—
L

o N —
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Mapping one network into another

+ Notion is strangely missing from the literature

Seen in Biology: single-network analysis (e.g. structure of feedback loops) and network reduction
(e.g. while preserving steady states). Study of common or frequent subnetworks.

Seen in C.S.: comparing network behaviors (e.g. morphisms of event structures).
Nothing much resembling (bi)simulation “on the syntax” (structure) of whole biochemical networks.

+ Model reduction is unavoidable and pervasive, but

Often criticized/ignored by biologists when it leads to quantities that are “not biologically
meaningful”. E.g. a fusion or change a variables in the ODEs where the new variables do not
correspond to biological parts. The reduced model should “inform” the original one.

: Soences ethos

The "truth” is the big network, not the small one!
If you depart from the truth in any way, you have to explain how you can get back to it.

The point is not to reduce the size of the network (although that's neat),
but to understand aspects of the big network by reference to a smaller one.

The mapping is more important than either networks.

Norbert Wiener

Pioneer of stochastic processes

and inventor of Cybernetics.

"The best material model of a
cat is another, or preferably the

same, cat”

28




Network Emulation  E.g.: Ml emulates AM

- For any rates and initial conditions of AM, we can find some rates and initial
conditions of Ml such that the (6) trajectories of Ml retrace those (3) of AM:

o 1 1

y Z » X =
[ P vEx
(3 species)
Mmi AM
] o] / N initialize:
] z2 1 N\ x2
2 :(1’ 2 Zz=X
- E ~y =X
U.SE DSE (y2=X0
- Y1 =X
SR SR VR SR N T Yo = Xo)

(6 species on 3 trajectories) (3 species on 3 trajectories)

- How do we find these matching parameters? By a network morphism! 29




CRN Morphisms

A CRN morphism from (S, R) to (S, R)
written m € (S,R) - (S, R)

is a pair of maps m = (mg, mg)
a speciesmapms €S — S
a reaction map mgz € R - R

extended to a complex map ms € NS — N°
linearly: ms(p)s = Egems—1(5) Ps

Mappings (symmetries)
between two networks

LI

r Xt X | — %)

Lo

Yoe— Y1ie— Yo

x1 + xo T T

2,4
(S

Yot+2zog Y112
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How to check emulations

- How do we check a potential emulation morphism
for all possible initial conditions of the target?

- Statically! Check conditions on the joint stoichiometric
matrices of the two networks under the mapping.

- How do we check a potential emulation morphism

for all possible rates of the target?

- Can't; but if one emulation is found, then the rates of the
target network can be changed arbitrarily and a related
emulation will again exist.

31




Network Emulation: Ml emulates AM
A ’ f | d ti .
Mapping Of species ana reactions / il condition

AM

homomorphic mapping

; — - .
Z->X . f N initial conditions:
~y -> X ] N

% |: z S Z,=Y1=X
RE VARSI =Y =%

less trivial than you might think:
it need not preserve the out-degree of a node!

32




Network Emulation: S emulates AM

A mappmg of speoes and reactions _ Q:i’
l_l_—l ] N any initial conditions

homomorphic mapping

initial conditions:

; 2
-y o] - Zp=Y2=Xp
‘ LZ . Z;1=Y15%

Z;=Yo =X,

Z->X
~y -> X

Si ZO‘ VZ]A _=22_

33




Network Emulation: NCC emulates M

+ For any rates and initial conditions of Ml we can find some rates and initial
conditions of NCC such that the (18) trajectories of NCC retrace those (6) of Ml
(3 species each)

3 9\ Il - 2 T
Vi il zipoz el
?_/ I - 05 \ SZ ) Y,q,S >y 05_ | T T M

IIIIIIIIII IIIIIII
3 3

NCC Ml

(/// S S S

.

(18 species on 6 trajectories) (6 species on 6 trajectories) initialize
zZLp =z
yas =y

34




Emulations Compose

- The (18) trajectories NCC can always retrace those (3) of AM

d i o«

{ Lp -z Z,~y-> X
1_ J_ // T _'I' YAy » — X --- The new cell cycle switch
late AM exactly.
T_ _T Zrp - X _ I - emg » iy

~Y,~Q,~S > X For any initial conditions

NCC AM of AM.

/ ..... / ' And for any rates of AM.
] A ] N\, x0
2.54 22 | e N
] 2 1 N2

IS SIS S
EREREAAD

(18 species on 3 trajectories) (3 species on 3 trajectories)
35




Emulations are Modular

A L |
Ay m&
E_T I i 0 10 20 30 40 50

--------

t x0 1 2
B

-------------------

0 24 22 Yo vyl y2 wo wi w2

T — OO
TN HE
i f?'?“ - thook "!M‘!‘
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Static Test for Emulation

Emulation Theorem: If m € (S,R) - (S, R)

is @ CRN reactant morphism and
stoichiomorphism then it is a CRN emulation

: T, o 7. T preserve enough
reactantmorphism — Mg” - p = P - Mg network structure

N _ _ ~ preserve enough
stoichiomorphism Y -Mp=Mg" QP chemical stoichiometry

U

emulation /P, F(Do ms) = F‘(i}) omg preserve derivatives

F is the differential system of (S, R), given by the law of mass action, ¥ is a
state of (S, R). ¢ is the stoichiometric matrix and p is the related reactant
matrix. mg and mg, are the characteristic 0-1 matrices of the morphism maps
ms (on species) and mg, (0N reactions). —Tis transpose.

Homomorphism implies reactant morphism.

Cardellil BMC Systems Biology 2014, 884
hitp: ) Lcom/175.

BMC
Systems Biology

RESEARCH ARTICLE Open Access

Morphisms of reaction networks that couple
structure to function

Luca Cardelli’™?

=AM
N

AM

]

—_— —
Xt Xj — X

:

:
U

YoerereY1

SR
»
N

:

—, —
~ Zoe— Z1e— 2,

:

Stoichiomorphims condition is
sufficient for “networks of interest”
and actually “close” to a necessary condition.




EFmulation is (Backward) Bisimulation

» Definition 13 (Cumulative flux rate). Let (S, R) be a CRN, X € §, p € MS(S), and
M C MS(S). Then, we define

Forward and Backward Bisimulations for Chemical
Reaction Networks

fI‘ X‘ = Z m X — X LR f]_‘ X., M = Z fr X., . Luca Cardelli', Mirco Tribastone?, Max Tschaikowski®, and
( ' p) ( ( ) p( )) [ ] Y ( p) Andrea Vandin?
P TER P= 1 Microsoft Research & University of Oxford, UK
luca@microsoft.com
We call fr(X, p) and fr[X, M| p-flux rate and cumulative M-flux rate of X, respectively. B vty o S UK dta)ssoton.ac.uk
» Definition 14 (Backward CRN bisimulation). Let (S, R) be a CRN, R an equivalence
Concur 2015

relation over S, H = S/R and p the choice function of H. Then, R is a backward CRN
bisimulation (BB) if for any (X,Y) € R it holds that

fr[X,M] = fr[Y, M| forall Me{p|p— e R}/ ~y, (2)

where any two p,0 € MS(S) satisty p ~y o if p(p) = p(o).

» Theorem 17 (Backward bisimulation characterizes exact fluid lumpability). Let (S. R) be a
CEN. Then, H is an exactly fluid lumpable partition of S if and only if H is a BB of S.

An emulation between two CRNs can be understood in terms of a
backward CRN bisimulation over the species of a “union CRN" that

contains all the species and reactions of the two CRNs of interest. N




Applicationsof BB~

[\/l Od e| Red U CtiO N Sneddon et al., Nature Methods, 2011

. Reacti ) Time (s) | BB | Time (s)
- Find redluced networts Il el il il

- Com pute quotient CRNs 3538044 262146 222  4.61E+4 222 7.65E+4
: Fl nd network Sym metries e8 786432 65538 167 1.92E+3 167 3.68E+3
that may be of biological interest
ey 172032 16386 122 8.15E+1 122 1.77E+2
M O rp h | S m G e n e ratl O n eb 26864 4098 86 3.00E+0 86 7.29E+0
- Find morphisms between networks i I
(e.g. all the ones for a fixed rate assignment) - =T s e e
e3 288 66 22 1.00E-3 22 3.00E-3
Forward and Backward Bisimulations for Chemical
Reaction Networks e2 48 18 12 1.00E-3 12 2.00E-3

Luca Cardelli', Mirco Tribastone?, Max Tschaikowski®, and
Andrea Vandin®

Aggregation ‘ Emulation
reduction reduction

1  Microsoft Research & University of Oxford, UK
luca®microsoft.com

2-4 University of Southampton, UK ( O n C U r 2 O’I 5
{m.tribastone,m.tschaikowski,a.vandin}@soton.ac.uk 39
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Approximate Majority Emulation Z00

r% X %‘; Ll T}
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..y_ -e |
-
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— fi'. — ’> y S,f Z ” X 5
® 1 S :
¥_ _$ Z:‘»’X [i} r,~»x $]
! ! ccr I
“ - Gl G5 S SnCataliie
y l__|_.| ‘ X SWItGh
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SRt Eﬂiﬂ%m ll_l
r |_ x am
w TT 1 Ll
r 41

( homomorphism and
stoichiomorphism (transitive))




Approximate Majority Emulation Z00

q s ;o- — 7 -- S j:-

[ _é | T J_ fri

T_:_I I | 2*:; -y ] \ A T
~y—  ler T_z.. Al ccr

ol s — Lr

il

( homomorphism and
stoichiomorphism (transitive))
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Stochasticity




The SWltCh |S ﬂO|Sy CCr with r,s at 1/10 of x,

ro,So rates 10* the rates of x,,x,

- Biological conditions:

- X is abundant, rs are “undetectable”

Th|s situation does not emulate AM

Because of the extra low-count r/s traces

- BUT it emulates two separate copies of AM: one for x and one
(low-count) copy for r/s

- Hence it is still (deterministically) a good switch in the AM family

- In particular, the low count species can be effective regulators even
though they are present in “undetectable” quantities.

- But, we can expect significant noise

-+ On r/s because they are in low-count
- Likely on x because it is regulated by r/s

Showing just the

low-count species:




CCr with r,s at 1/10 of x, —® S

Stochastic behavior ot 10" e e, | |
- We can in fact study the Chemical Master Equation !

sa1>ads ||e

sa10ads S/
UO WO0Z




Trivial Example: AM vs.

- Usually “more molecules”
means “less noise”

- But not always

- 2*AM emulates AM, hence the mean trajectories
of 2*AM are the same as AM

- The noise (s.d.) of 2*AM is also the same as AM

- So, 2*AM has twice as many molecules, but
noise is not reduced

And not uniformly

MI,SI are two “intertwined” copies of AM
- Are MI,SI less noisy than 2*AM?

- Are MI,SI equally noisy? (They have the same
number of molecules and reactions.)

2*AM
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Stochastic Switches

- Disentangle the contribution
of complexity to stochasticity

- Compare network noise on the baseline of
deterministic emulation, across networks of
different size and structure

Noise Reduction in Complex Biological Switches

Luca Cardelli%>7", Attila Csikasz-Nagy>* T, Neil Dalchau™", Mirco Tribastone™T,
Max Tschaikowski>"

(To appear,)

A
AM I—_Txl_l
st |7 L_i
mi )E :l I: z
] : .
1 . :
ce =
gx; :, E
L o 1 2 3 4 5

Fig 3 — Basic switching networks: stochastic selution. Horizontal axes represent time, vertical axes represent number of
molecules. {A) Influence networks. (B) Chemical Master Equation salution: probability distribution, with color (in 10 bands
from light = 0 to dark = 1) indicating the probability that at time t there are y molecules of the single indicated species. (C)
Chemical Master Equation solution: mean (solid lines) and standard deviation (color bands) for the species in the network.
(D} Central Limit Approximation solution: mean (solid lines) and standard deviation (color bands) for the species in the

network. Simulation scripts are in S5 Appendix.




Stochastic Switches

- Network complexity intrinsically reduces noise

Noise Reduction in Complex Biological Switches

Luca Cardelli%%%", Attila Csikdsz-Nagy>*¥, Neil Dalchau®", Mirco Tribastone>",
Max Tschaikowski>f

(To appear.)

A Forwards B Backwards

Standard deviation
Standard deviation

Time

Fig 6 — Complexity improves overall performance of the cell cycle switch. The performance of different networks was
evaluated by calculating the standard deviation of the main molecular states (x, or z,, depending on the network) over time.
Standard deviations are caleulated via numerical integration of the chemical master equation (CME) using the Visual GEC
software, and via numerical integration of the central limit approximation (CLA) in Matlab. We investigate switching in one
direction or the other by providing different initial conditions that settle (more likely) in different steady states. (A) In the
forward direction, principal molecular states were initialised at 2 copies, and complementary molecular states were initialised
at 1 copy, as shown in Fig 2C and Fig 5B. (B) In the reverse direction, principal molecular states were initialised at 1 copy, and

complementary molecular states were initialised at 2 copies.
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Conclusions




Networks are Algorithms

- They are methods for achieving a function

- We need to understand how these methods relate to each other
- In addition to how and how well they implement function
- Algorithms can be obfuscated, and nature can obfuscate networks (to what end?)

- Network emulation can be checked statically

+ By stoichiometric/reaction-rate (structural) properties
- That is, no need to compare ODE (functional) properties
- For any initial conditions and rates of (one of) the networks

- We can efficiently discover emulations

- Automatic model reduction of large networks 5




Nature likes good algorithms
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These additional feedbacks do exist
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