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� No survival without computation!
� Finding food

� Avoiding predators

� How do cells compute?
� Clearly doing “information processing”

� What are their computational principles?

Cellular Computation

2

Ultrasensitivity in the mitogen-activated protein cascadecascadecascadecascade, , , , Chi-Ying F. Huang 
and James E. Ferrell, Jr., 1996, Proc. Natl. Acad. Sci. USA, 93, 10078-10083.



More concretely
� Give substance to the claim that 

“cells compute”
� Yes, but what do they compute?

� Catch nature red-handed in the act 
of running a computational task
� Something that a computer scientist 

would recognize as an algorithm
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H.Lodish & al. Molecular Cell Biology  4th ed.



Chemical Algorithms



Can Chemistry Compute?
� If we believe that biology can do computation…

� It must be somehow based on chemistry

� So, can chemistry compute, and how?
� That is in itself a very interesting question with non-trivial answers
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Chemical Programming Examples
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Y := max(X1, X2) X1 -> L1 + Y
X2 -> L2 + Y
L1 + L2 -> K
Y + K -> 0

max(X1,X2)=
(X1+X2)-min(X1,X2)

(but is not computed 
“sequentially”: it is a form 
of concurrent computation)

specification program

Y := min(X1, X2) X1 + X2 -> Y

(bio-)chemical reaction network



Biochemical Networks
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Across species: Ortholog genes Within species: Paralog genes

“same function”

“new function”



How do we know networks exist?
� If you can break it, it must exist

� Genome sequencing identifies genes (their “coding” regions)

� Sequence comparison identifies orthologs and paralogs

� Gene-produced proteins are isolated or synthetically produced in vitro or in vivo (all difficult)

� Their qual/quant interactions are studied (often only in vitro)

� Their 3D structure is determined (may take decades)

� Networks are hypothesized, often qualitatively

� Models are build, quantitative function is inferred

� Further experiments (such as gene knockouts) are performed to break the network.

� Genes and networks are compared across and within species
� High-value activity: 2001 Nobel prize in Physiology for the discovery of “Key regulators of the 

cell cycle … they have identified key molecules that regulate the cell cycle in all eukaryotic 
organisms, including yeast, plants, animals, and human.” These are actually not (currently) the 
same molecules, but it is (still) “the same network” in all of them.
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Simplified example
� Genes for x, s, r identified

� Say protein x exists in high quantity
� Knock gene-x out: one protein goes missing, that must be x’s protein

� Say proteins s exists in “undetectable” quantities
� Maybe 10~100 copies per cell on average: it cannot be found

� Knock gene-s out: nothing seems to go missing, but the network’s function stops

� Then we know protein-s must be in the network, although we don’t know “where”

� Heterogeneous system
� It is indeed the case (in this cell-cycle-switch example) that x is “deterministic” (high 

copy count), while s,r, are “stochastic” (very low copy count) and yet s,r control x.
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Consensus Networks



� Population Consensus
� Given two populations of x and y “agents”

� We want them to “reach consensus”

� By converting all agents to x or to y
depending on which population was in majority initially

� Population Protocols Model
� Finite-state identity-free agents (molecules) interact in 

randomly chosen pairs (⇒ stochastic symmetry breaking)

� Each interaction (collision) can result in state changes

� Complete connectivity, no centralized control (well-mixed solution)

A Consensus Problem
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specification

X,Y := X+Y, 0   if  X0 ≥ Y0

X,Y := 0, X+Y if  Y0 ≥ X0



� Approximate Majority (AM) Algorithm
� Uses a third “undecided” population b

� Disagreements cause agents to become undecided

� Undecided agents agree with any non-undecided agent

A Consensus Algorithm
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x yb

x + y →r y + b
y + x →r x + b
b + x →r x + x
b + y →r y + y

catalysis

chemical
reaction
network

x=y=5000
b=0

x=5500
y=4500
b=0

activation
inhibition

AM



A Biological Implementation
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Approximate Majority (AM) Epigenetic Switch

x yb

1) Bistable
Even when initially x=y (stochastically)

2) Fast (asymptotically optimal)
O(log n) convergence time

3) Robust to perturbation
above a threshold, initial majority wins whp

2007 2007



Here We Got Lucky
� We can claim that the epigenetic switch is a direct

biological implementation of an algorithm
� Although we may have to qualify that with some notion of 

approximation of the (enzymatic) kinetics

� In most cases the biological implementation seems 
more indirect or obfuscated
� “Nature is subtle but not malicious - Einstein” Ha! think again!

� Other implementations of Approximate Majority seem more 
convoluted and approximate
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How to model “Influence”
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“True” molecular interactions. “Equivalent” influence interactions.

Chemical Reaction Network Influence Network



The Triplet Model of Influence
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=
inhibition

activation

inhibit x

activate x

high
(modified)

low
(unmodified)

x is high x is low

Usually modeled by 
sigmoid (e.g. Hill or 
Reinitz) functions

We model them by 
4 mass action reactions over 
3 species x0, x1, x2

They actually implement a 
Hill function of coefficient 2:

activation
inhibition
catalysis

r21 = 0.1

r10 = 10.0

r01 = 0.1

r12 = 10.0

triplet motif

biological mechanism:
(e.g.:) multisite 
phosphorylation

AM

=

Approximate Majority

For example:



� This basic network is universal in Eukaryotes [P. Nurse]
� The switching function and the basic network is the same from yeast to us.

� In particular detail, in frog eggs, G2/M transition:

� The function is very well-studied. But why this network structure?

� That is, why this peculiar algorithm?

xy

The Cell Cycle Switch
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Double positive feedback on x
Double negative feedback on x
No feedback on y.    Why ???

Hybrid Hybrid Hybrid Hybrid 
System!System!System!System!



How to Build a Good Switch
� We need first a bistable system: one that has two distinct and stable

states. I.e., given any initial state the system must settle into one of 
two states

� The settling must be fast (not get stuck in the middle for too long)
and robust (must not spontaneously switch back)

� Finally, we need to be able to flip the switch by external inputs
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A Bad Algorithm
� Direct Competition

� x catalyzes the transformation of y into x

� y catalyzes the transformation of x into y

� when all-x or all-y, it stops

� This system has two end states, but
� Convergence to an end state is slow (a random walk)

� Any perturbation of an end state can start a random 
walk to the other end state (hence not really bistable)
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y + x → x + x
x + y → y + y

x y

catalysis



A Good Algorithm
� Approximate Majority (AM)

� Third, undecided, state b

� Disagreements cause agents to become undecided

� Undecided agents believe any non-undecided agent

� With high probability, for n agents
� The total number of interactions before converging is O(n log n)

⇒ fast (optimal)

� The final outcome is correct if the initial disparity is ω(sqrt(n) log n)

⇒ solution states are robust to perturbations

� Logarithmic time bound in parallel time
� Parallel time is the number of steps divided by the number of agents

� In parallel time the algorithm converges with high probability in O(log n)
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x=y

Worst-case scenario, 
starting with x=y, b=0:

activation
inhibition

AM



An “Ugly” Algorithm: Cell Cycle Switch

� Is it a good algorithm? Is it bad?

� Is it optimal or suboptimal?

21

Nobel-prize 
winning network

Obfuscation of a 
distributed 
algorithm?

xy

activation
inhibition



Convergence Analysis   - CONSENSUS
� Switches as computational systems
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DC AM SC CC

1.0

0.00355

0

0

2.0

0.00710

0

0

2.0

15

0

0.00710

← tp →0

0

↑

xp
↓

Pr(xp|tp)

1.00

15000

0

1.00

↑

xs
↓

← ts →

Start symmetrical
(x0=x1=x2 etc.)

Black lines: several stochastic simulation traces
Color: full probability distribution of small-size system

CC converges in O(log n) time (like AM)
(but 2x slower than AM, and does not fully switch)



Steady State Analysis   - SWITCH
� Switches as dynamical systems
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↑

xp
↓

← sxp → 150
0

15

Pr(xp|sxp)

150

150
0

0

↑

xs
↓

← sxs →

DC AM SC CC

Black lines: deterministic ODE bifurcation diagrams
Red lines: noisy stochastic simulations
Color: full probability distribution of small-size system



The Cell Cycle Switch Computes AM
� Our paper appeared:

� Suggesting GW is a better switch 
than CC.             September 2012

� Another paper that 
same week:
� Showing experimentally that the 

Greatwall loop is a necessary
component of the switch, i.e. the 
not-as-good-as-AM network
has been ‘refuted’

24



Antagonistic Networks
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1 vs. 1 
Mutual Inhibition &
Self Activation

1 vs. 1 
Mutual Inhibition &
Mutual Anti-activation

Cell cycle transitions

Polarity establishment

Gene networks

Septation Initiation

3 vs. 3

The “new” cell cycle switch

MI SI

NCC

2 vs. 2

activation
inhibition

Delta-Notch



Network Morphisms

When does a (complex) network

implement a (simpler) algorithm?



Comparing networks
� How can we compare different networks?

� Different number of species

� Different number of reactions

� Apparently unrelated connectivity

� So that we can compare their function?
� Does antagonism (in network structure) guarantee bistability (in function)?

� We do it by mapping networks onto one another
so that they emulate each other
� Deterministic semantics version of “simulation” of systems

� (Stochastic semantics was the starting point, but too difficult/demanding for typical 
biological networks.)

27



Mapping one network into another
� Notion is strangely missing from the literature

� Seen in Biology: single-network analysis (e.g. structure of feedback loops) and network reduction 
(e.g. while preserving steady states). Study of common or frequent subnetworks.

� Seen in C.S.: comparing network behaviors (e.g. morphisms of event structures).

� Nothing much resembling (bi)simulation “on the syntax” (structure) of whole biochemical networks.

� Model reduction is unavoidable and pervasive, but
� Often criticized/ignored by biologists when it leads to quantities that are “not biologically 

meaningful”. E.g. a fusion or change a variables in the ODEs where the new variables do not 
correspond to biological parts. The reduced model should “inform” the original one.

� Science’s ethos
� The “truth” is the big network, not the small one!

If you depart from the truth in any way, you have to explain how you can get back to it.

� The point is not to reduce the size of the network (although that’s neat), 
but to understand aspects of the big network by reference to a smaller one.

� The mapping is more important than either networks.

28

Norbert Wiener
Pioneer of stochastic processes 

and inventor of Cybernetics.

“The best material model of a 
cat is another, or preferably the 
same, cat”



Network Emulation E.g.: MI emulates AM
� For any rates and initial conditions of AMAMAMAM, we can find some rates and initial 

conditions of MIMIMIMI such that the (6) trajectories of MIMIMIMI retrace those (3) of AMAMAMAM:

� How do we find these matching parameters? By a network morphism! 29

(6 species on 3 trajectories) (3 species on 3 trajectories)

~y,z⇢ x

MI AM

initialize: 
z = x

~y = x

(y2 = x0

y1 = x1

y0 = x0)

(3 species)



CRN Morphisms
A CRN morphism from �, 	 to (��, 	�)

written � ∈ �, 	 → (��, 	�)

is a pair of maps � = �� , �ℛ

a species map �� ∈ � → ��

a reaction map �ℛ ∈ 	 → 	�

extended to a complex map �� ∈ ℕ� → ℕ�� 

linearly: �� � �̂ = Σ�∈��
��(�̂) ��

30

Mappings (symmetries) 
between two networks

�� + � 

!� + ! 

�" + � 

2! 



How to check emulations
� How do we check a potential emulation morphism 

for all possible initial conditions of the target?
� Statically! Check conditions on the joint stoichiometric 

matrices of the two networks under the mapping.

� How do we check a potential emulation morphism 
for all possible rates of the target?
� Can’t; but if one emulation is found, then the rates of the 

target network can be changed arbitrarily and a related 
emulation will again exist.
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Network Emulation: MI emulates AM
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MI

initial conditions:

z0 = y2 = x0

z1 = y1 = x1 

z2 = y0 = x2

AM

homomorphic mapping

any initial conditions

less trivial than you might think:

it need not preserve the out-degree of a node!

A mapping of species and reactions

z -> x
~y -> x



Network Emulation: SI emulates AM
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SI

initial conditions:

z0 = y2 = x0

z1 = y1 = x1 

z2 = y0 = x2

AM

homomorphic mapping

any initial conditions

A mapping of species and reactions

z -> x
~y -> x



Network Emulation: NCC emulates MI

� For any rates and initial conditions of MIMIMIMI we can find some rates and initial 
conditions of NCC NCC NCC NCC such that the (18) trajectories of NCC NCC NCC NCC retrace those (6) of MIMIMIMI

34

(6 species on 6 trajectories)

MI

(18 species on 6 trajectories)

NCC

z,r,p ⇢ z
y,q,s ⇢ y

initialize 
z,r,p = z
y,q,s = y

(3 species each)

NCC

MI



Emulations Compose
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� The (18) trajectories NCCNCCNCCNCC can always retrace those (3) of AMAMAMAM

(18 species on 3 trajectories) (3 species on 3 trajectories)

AM
NCC

z,~y⇢ x

z,r,p ⇢ x
~y,~q,~s ⇢ x

z,r,p ⇢ z
y,q,s ⇢ y

The new cell cycle switch 
can emulate AM exactly.

For any initial conditions 
of AM.

And for any rates of AM.



Emulations are Modular
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Static Test for Emulation
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Emulation Theorem: If � ∈ �, 	 → ��, 	�

is a CRN reactant morphism and 
stoichiomorphism then it is a CRN emulation

$ is the differential system of �, 	 , given by the law of mass action, %& is a 
state of ��, 	� . ' is the stoichiometric matrix and ( is the related reactant 
matrix. )* and )+ are the characteristic 0-1 matrices of the morphism maps 
�� (on species) and �ℛ (on reactions). −- is transpose.
Homomorphism implies reactant morphism.

)*
- · ( = (/ · )+

-

' · )+ = )* · '/

∀%/.   $ %/ ∘ �� = $� %/ ∘ ��

⇒

reactant morphism

stoichiomorphism

emulation

preserve enough
network structure

preserve enough
chemical stoichiometry

preserve derivatives ⇒MI

AM

MI

AM

Stoichiomorphims condition is 
sufficient for “networks of interest”
and actually “close” to a necessary condition.



Emulation is (Backward) Bisimulation
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Concur 2015

An emulation between two CRNs can be understood in terms of a 
backward CRN bisimulation over the species of a “union CRN” that 
contains all the species and reactions of the two CRNs of interest.



Applications of BB
� Model Reduction

� Find reduced networks

� Compute quotient CRNs

� Find network symmetries 
that may be of biological interest

� Morphism Generation
� Find morphisms between networks

(e.g. all the ones for a fixed rate assignment)

39
Concur 2015

Aggregation
reduction

Emulation
reduction



Approximate Majority Emulation Zoo
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p ⇢ r

q ⇢ s

p ⇢ r
q ⇢ s

p ⇢ r

q ⇢ s

MI

QI

AM

z,~y⇢ x
z,r ⇢ z
y,s ⇢ y

z,~y ⇢ z
s,~r ⇢ y

z,~y⇢ x

CCr

z,~y ⇢ x r,~s ⇢ x

SI

r,~s ⇢ x

s ⇢ y
r ⇢ z

x ⇢ z
s,~r ⇢ y

s ⇢ y

SCr

SCr’

CCr’

r ⇢ z

r,~s ⇢ x

r,s ⇢ x

NCC

GW

z,~y ⇢ z
s,~r ⇢ y

DN

(          homomorphism and 
stoichiomorphism (transitive))

r ⇢ x

~s ⇢ x

AMs

AMr



Approximate Majority Emulation Zoo
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p ⇢ r

q ⇢ s

p ⇢ r
q ⇢ s

p ⇢ r

q ⇢ s

MI

QI

AM

z,~y⇢ x
z,r ⇢ z
y,s ⇢ y

z,~y ⇢ z
s,~r ⇢ y

z,~y⇢ x

CCr

z,~y ⇢ x r,~s ⇢ x

SI

r,~s ⇢ x

s ⇢ y
r ⇢ z

x ⇢ z
s,~r ⇢ y

s ⇢ y

SCr

SCr’

CCr’

r ⇢ z

r,~s ⇢ x

r,s ⇢ x

NCC

GW

z,~y ⇢ z
s,~r ⇢ y

DN

(          homomorphism and 
stoichiomorphism (transitive))

r ⇢ x

~s ⇢ x

AMs

AMr



Approximate Majority Emulation Zoo
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p ⇢ r

q ⇢ s

p ⇢ r
q ⇢ s

p ⇢ r

q ⇢ s

MI

QI

AM

z,~y⇢ x
z,r ⇢ z
y,s ⇢ y

z,~y ⇢ z
s,~r ⇢ y

z,~y⇢ x

CCr

z,~y ⇢ x r,~s ⇢ x

SI

r,~s ⇢ x

s ⇢ y
r ⇢ z

x ⇢ z
s,~r ⇢ y

s ⇢ y

SCr

SCr’

CCr’

r ⇢ z

r,~s ⇢ x

r,s ⇢ x

NCC

GW

z,~y ⇢ z
s,~r ⇢ y

DN

(          homomorphism and 
stoichiomorphism (transitive))

r ⇢ x

~s ⇢ x

AMs

AMr

Neutral paths
in network space

Side
jumps



Stochasticity



The switch is noisy
� Biological conditions:

� x is abundant, r,s are “undetectable”

� This situation does not emulate AM
� Because of the extra low-count r/s traces

� BUT it emulates two separate copies of AM: one for x and one 
(low-count) copy for r/s

� Hence it is still (deterministically) a good switch in the AM family

� In particular, the low count species can be effective regulators even 
though they are present in “undetectable” quantities.

� But, we can expect significant noise
� On r/s because they are in low-count

� Likely on x because it is regulated by r/s

44

CCr with r,s at 1/10 of x, 

r0,s0 rates 10* the rates of x0,x2

Showing just the 

low-count species:



Stochastic behavior
� We can in fact study the Chemical Master Equation
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Mean and ±s.d. of 
species over time.

Mean and probability distribution of one species over time.

a
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r,s
sp

e
cie

s

x0 x1 x2

r0, s2 r1, s1 r2, s0

CCr with r,s at 1/10 of x, 

r0,s0 rates 10* the rates of x0,x2



Trivial Example: AM vs. 2*AM
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x’,x”⇢x

AM

2*AM

� Usually “more molecules” 
means “less noise”

� But not always
� 2*AM emulates AM, hence the mean trajectories 

of 2*AM are the same as AM

� The noise (s.d.) of 2*AM is also the same as AM

� So, 2*AM has twice as many molecules, but 
noise is not reduced

� And not uniformly
� MI,SI are two “intertwined” copies of AM

� Are MI,SI less noisy than 2*AM?

� Are MI,SI equally noisy? (They have the same 
number of molecules and reactions.) MI SI



Stochastic Switches
� Disentangle the contribution 

of complexity to stochasticity
� Compare network noise on the baseline of 

deterministic emulation, across networks of 
different size and structure

47

(To appear.)



Stochastic Switches
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(To appear.)

� Network complexity intrinsically reduces noise



“Stochastic Network Morphisms”
� ?
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Conclusions



Networks are Algorithms
� They are methods for achieving a function

� We need to understand how these methods relate to each other

� In addition to how and how well they implement function

� Algorithms can be obfuscated, and nature can obfuscate networks (to what end?)

� Network emulation can be checked statically
� By stoichiometric/reaction-rate (structural) properties

� That is, no need to compare ODE (functional) properties

� For any initial conditions and rates of (one of) the networks

� We can efficiently discover emulations 
� Automatic model reduction of large networks 51



Nature likes good algorithms
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CCr

CC
Approximate

“default” rates and initial conditions

Exact
any rates and initial conditions

These additional feedbacks do exist 
in real cell cycles (via indirections)

The cell cycle switch can exactly emulate AM

NCC MI
AM



Feynman’s Blackboard
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